A Platform for Risk Analysis of Security Critical Systems

Model-based Risk Analysis
Targeting Security

Bjørn Axel Gran
Institutt for energiteknikk / OECD Halden Reactor Project
bjorn.axel.gran@hrp.no
Overview

• Introduction
• The CORAS framework
• Model-based risk assessment
 – The CORAS risk management process
 – The CORAS system documentation framework
 – The CORAS platform for tool integration
 – The CORAS integrated risk management and development process
• CORAS trials
• Conclusions
The CORAS Project

- A research and technological development project under the Information Society Technologies (IST) Programme
- Started up in January 2001 and runs until July 2003
- 3 commercial companies:
 Intracom (Greece), Solinet (Germany) and Telenor (Norway);
- 7 research institutes:
 CTI (Greece), FORTH (Greece); IFE (Norway), NCT (Norway), NR (Norway), RAL (UK) and Sintef (Norway);
- 1 university college: QMW (UK).
- Telenor administrative responsible
- Sintef scientific coordinator
- IFE responsible for the work package on Risk Analysis
What is CORAS?

- Aims at developing a practical framework for a **precise, unambiguous, and efficient risk analysis** of security critical systems.
- Exploits methods for risk analysis, semiformal description methods, and computerised tools.
- The focus lies on the tight integration of viewpoint-oriented **UML-like modelling** in the risk management process.
- CORAS addresses **security critical systems** in general, but puts particular emphasis on IT security.
- Includes all aspects related to defining, achieving, and maintaining **confidentiality, integrity, availability, non-repudiation, accountability, authenticity, and reliability** of IT systems.
- An IT system in the sense of CORAS is not just technology, but also the **humans** interacting with the technology and all relevant aspects of the surrounding organisation and society.
The CORAS approach: Model-based Risk Assessment

- Risk assessment
- Precise input at the right level of abstraction
- Graphical OO-modelling
- Documentation of analysis results and assumptions

Graphical oo-models as media for communication

Model-based risk assessment
Benefits of Model-based Risk Assessment

• Improved precision in the description of security relevant features improves quality of risk analysis results
• State-of-the-art graphical modeling furthers communication between stakeholders, thereby preventing misconceptions
• Increased possibilities for reuse reduces maintenance costs
• Interoperability between different methods improves effectiveness
• Rich set of tools increases productivity, efficiency as well as maintenance
• Tight integration of risk management in the system development process reduces development costs and ensures that the specified security level is achieved
The CORAS framework

- **AS/NZS 4360**: Risk Management Process
- **RM-ODP**: Reference Model for Open Distributed Processing
- **RUP**: Rational Unified Process
- **XML**: eXtensible Markup Language
- **A Platform for Risk Analysis of Security Critical Systems**

- **System documentation framework**
- **Integrated development and risk management process**
- **Model-based risk assessment**
 - Platform for tool inclusion based on data integration
The CORAS risk management process

The process is based on:
- AS/NZS 4360: 1999 Risk Management

Complemented by:
The CORAS system documentation framework

- RM-ODP divides the system documentation into five viewpoints.
- It also provides modelling, specification and structuring terminology, a conformance module addressing implementation and consistency requirements, as well as a distribution module defining transparencies and functions required to realise these transparencies.

The CORAS system documentation framework extends RM-ODP with

- concepts and terminology for risk management and security;
- within each viewpoint carefully defined models targeting model-based risk management and assessment of security-critical systems;
- libraries of reusable model fragments targeting risk assessment;
- additional support for conformance checking;
- a risk management module.
The CORAS Integrated risk management and development process

The CORAS integrated risk management and development process is based on an integration of AS/NZS 4360 and an adaptation of the Unified Process to support RM-ODP inspired viewpoint oriented modelling.
The CORAS platform for tool integration based on data integration

- Relevant aspects of the internal data representation may be mapped to the internal data representations (XML/XMI) of other tools.
- This allows the integration of sophisticated case-tools targeting system development as well as risk analysis tools and tools for vulnerability and treat management.

Data integration implemented in terms of XML

www.nr.no/coras
A Platform for Risk Analysis

Identify Context
(Prepare/Describe the TOE)
- the strategic contexts
- the organisational contexts
- the risk management context
- develop criteria
- decide the structure

Identify Risk
What can happen? How can it happen?

Analyse Risks
determine likelihood
determine consequences

Estimate level of risk

Evaluate Risks
compare against criteria, set risk priorities

Accept Risks

Treat Risks
ADVICE (Requirements)
- identify treatment options
- evaluate treatment options
- select treatment options
- prepare treatment plans
- implement plans

target

needs

assets

threat scenario

hazards

www.nr.no/coras

IST-2000-25031

EWICS symposium 22.01.2002
Sub processes supported by methods

Hazard and operability study (HAZOP);
Fault tree analysis (FTA);
Failure Mode and Effect Criticality Analysis (FMECA);
Markov analysis methods (Markov);
Goals Means Task Analysis (GMTA); and
CCTA Risk Analysis and Management methodology (CRAMM).

<table>
<thead>
<tr>
<th>Sub-process</th>
<th>Recommended Method(s)</th>
<th>Supporting Method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context identification</td>
<td>CRAMM</td>
<td>HAZOP</td>
</tr>
<tr>
<td>Identify Risks</td>
<td>HAZOP, CRAMM</td>
<td>FTA, FMECA, GMTA,</td>
</tr>
<tr>
<td>Analyse Risks</td>
<td>FMECA, FTA, MARKOV</td>
<td>HAZOP</td>
</tr>
<tr>
<td>Risk Evaluation</td>
<td>CRAMM, FTA</td>
<td>All methods</td>
</tr>
<tr>
<td>Risk Treatment</td>
<td>HAZOP</td>
<td>FMECA</td>
</tr>
</tbody>
</table>
The CORAS trials

- In order to ensure the effectiveness and broad applicability of the framework, two architecturally diverse platforms— one in the telemedicine and one in the e-commerce domain.
- In these trials, in addition to the CORAS consortium, external medical doctors will also be involved in risk analysis tasks.
- The purpose of the trials is to experiment with all aspects of the framework during its development, provide feedback for improvements and offer an overall assessment.
- 3 sub-trials within Telemedicine and E-commerce
The CORAS trials

- The E-commerce platform is a typical Web-based application using Internet technology.
- Availability issues
 - Criticality: Unavailability of a telemedicine platform may have severe consequences resulting in loss of life.
 - Graceful degradation: The E-commerce platform is intended for several users, whereas the telemedicine serves a small number of users. Increase in the number of users may result in degradation of response time.
- Accountability issues:
 - It is important for a telemedicine platform to be able to provide information regarding the access or modifications of data.
- A significant distinguishing factor is the nature of security risks:
 - The E-commerce platform is open to Internet, attracting attackers that probe for weaknesses or opportunities for malicious exploitation,
 - The telemedicine platform operates on a closed network with authorised users communicating using controlled computers.
Software/Hardware developed for the Crete Pilot of the ATTRACT project

Figure 4: The follow-up scenario of asthmatic children in Crete
A Platform for Risk Analysis of Security Critical Systems

Electronic Commerce Platform

“Provision of basic Electronic Retailing Services”

Interconnectivity | Integration | Relativity
Interdependance | Information flow |
The authentication mechanism

State Machine

- /create(sn)
- login(sn,un,pw)
- visitor(sn)
- invalid-request
- restart/create(sn)
- logout(sn)/remove(sn)

[Valid Account]

[Invalid Account]

Main

Home

Profile

www.nr.no/coras

www.nr.no/coras

IST-2000-25031

EWICS symposium 22.01.2002
Combining RA methods and UML models

HAZOP Attributes:

<table>
<thead>
<tr>
<th>Confidentiality</th>
<th>Disclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>Manipulation</td>
</tr>
<tr>
<td>Availability</td>
<td>Denial, delayed</td>
</tr>
<tr>
<td>Accountability</td>
<td>Untraceability</td>
</tr>
</tbody>
</table>

UML Sequence diagram
The CORAS trials
E-commerce

First e-commerce trial
- Involvement
- Feedback
- Assessment
- Education
- Analysis results
- Planning input
- Basis for further reports

We are here!
Conclusion

• The CORAS framework for model-based risk assessment.
• The CORAS risk assessment methodology integrates aspects of HazOp, FTA, FMECA, Markov Analysis as well as CRAMM.
• It is model-based in the sense that it gives detailed recommendations for the use of UML-oriented modelling in conjunction with assessment.

1. To describe the target of assessment at the right level of abstraction.
2. As a medium for communication and interaction between different groups of stakeholders involved in risk assessment.
3. To document risk assessment results and the assumptions on which these results depend.
Want to know more?

- **www.nr.no/coras**
 - Publications and Public Reports
 … will be updated within short time …
 - Contact Points
 www.ife.no,
 bjorn.axel.gran@hrp.no

- **CORAS Public Workshop**
 - Plan: CORAS workshop at the
 - International Conference on Telemedicine 2002 (ICT2002)